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Abstract

The notions of partial, relative and ¢,-stability of ordinary differential equations
(ODEs) are introduced in [E.P. Akpan, O. Akinyele, J. Math. Anal. Appl. 164 (1992)
307-324; V. Lakshmikantham, S. Leela, Differential and Integral Inequalities, vol. 1,
Academic Press, New York, 1969]. In this paper, we extend these notions to new types
of stability namely, ¢,-relative and ¢ -partial stability of ODEs using cone-valued
Liapunov function method and comparison technique. © 2001 Published by Elsevier
Science Inc.

1. Introduction

Lakshmikantham and Leela [3] initiated the development of a theory of
differential inequalities through cone and cone-valued Liapunov function
methods which depend on Liapunov’s direct method (see [4]). They discussed
and improved the notions of partial and relative stability of two differential
systems.

The aim of this paper is to extend these notions to new types of stability,
namely ¢,-relative stability of two differential systems:

x/ :fi(tax)a x(t()) = X0,

1.1
y, = Z(tvy)v y(tO) = Xo, ( )
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and ¢,-partial stability of two differential systems:
xI:F(tvxay)ﬂ X(to) = Xo,
YV =H(t,x,y), yt) =,

where fi,f£, € C[RT x R", R"], and fi(¢,0) = f>(¢,0) =0, F € C[R" x R"x
R", R, HeE CIR" x R x K", R"] and F(¢,0,0) = H(¢,0,0) =0, t € R,
with R* = [0, 00), R" and R" are n- and m-dimensional real Euclidean spaces,
respectively, with any convenient norm || - || and scalar product (,).

Recently, these systems were studied from other points of view by Lak-
shmikantham and Leela [3]. Furthermore these notions lie somewhere between
the notion of ¢,-stability of Akpan and Akinyele [1] on one side and partial and
relative stability of Lakshmikantham and Leela [3] on the other. The motivation
of this work is the recent work of Akpan and Akinyele [1] and Akpan [2].

The following definitions will be needed in the sequel:

(1.2)

Definition 1.1 (Akpan and Akinyele [1]). A proper subset K; of R” is called a
cone if

(i) AK; C Ky, 220,

(11) K+ K, CK,

(iii) K1 = K1,

(iv) K} # 0,

) Ki N (—K3) = {0},
where K, and K} denote the closure and interior of K, respectively, and 0K
denotes the boundary of K.

Definition 1.2 (Akpan and Akinyele [1]). The set K; = {¢ € R"; (¢,x) =0,
x € K;} is called the adjoint cone if it satisfies properties (i)—(v) of Definition 1.1.

x € 0K, iff (¢,x) =0 for some ¢ € K;,, Ko =K, \ {0}.

Definition 1.3 (Akpan and Akinyele [1]). A function g: D — R", D C R" is
called quasi-monotone relative to the cone K if x,y € D and y — x € 0K, then
there exists ¢, € K}, such that (¢,,y —x) =0 and (¢y, g(y) — g(x)) = 0.

Definition 1.4 (Lakshmikantham and Leela [3]). A function b(r) is said to
belong to the class # if b€ C[[0,p),R"], 5(0) =0, and b(r) is strictly
monotone increasing function in r.

2. ¢,-Relative stability

In this section, we improve and extend the notion of ¢,-stability of the
system (1.1) of Akpan and Akinyele [1] to a new type of stability, namely ¢,-
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relative stability. The motivation of this work is the recent work of Akpan and
Akinyele [1].

Following Lakshmikantham and Leela [3], for a Liapunov function
V(t,x,y) € C[R" xS, x S,,Ki], for any (t,x,y) € R" xS, xS,, S,={uecR"
lull < p, p >0}, Ky C R” be a cone in R, and V(¢,x,y) has continuous partial
derivatives with respect to ¢, x and y. We define D'V (¢,x,y) by

oV or

oV
+ _ —_— —_— P —_—
D V(t7x7y) - ot + ox fl(t7x) + ay f2(t,y)7

where ‘-’ denotes the scalar product.
If V(¢,x,y) is locally Lipschitzian in x and y then the function D"V (¢,x,y) is
defined by

. 1
DTV (t,x,y) =lim sup - [V(t+hx+hfi(t,x),y + hf2(t,7)) = V(1,x,7)]
for & > 0.

Definition 2.1 (Lakshmikantham and Leela [3]). The two differential systems
(1.1) are said to be relatively equistable, if for each, e > 0 and £, € R", there
exists a 6 = d(#, €) which is continuous in ¢, for each e such that the inequality

X0 —30ll <& implies  [lx(s) —y(1) <€, =10
for any solutions x(¢) = x(z, ty,x0), y(¢) = y(¢,1y,)0) of (1.1).

Other relative stability concepts can be similarly defined (see [3]).
The following definitions are somewhat new and related with that of [1,3].

Definition 2.2. The two differential systems (1.1) are said to be relatively ¢,-
equistable, if, for each e > 0, there exists 6 = (¢, €), continuous in # for each
€, such that for ¢, € K; the inequality

(o, x0 —0) < 6 implies (¢pg,x (¢) — y* (1)) < e, t =1y,

where x*(¢) and y*(¢f) denote the maximal solutions of the two differential
systems (1.1).

Definition 2.3. The two differential systems (1.1) are said to be uniformly rel-
atively ¢,-stable if ¢ in Definition 2.2 is independent of .

Definition 2.4. The two differential systems (1.1) are said to be relatively ¢,-
equi-asymptotically stable if they are relatively ¢,-equistable, and for each
€>0, t, € ', there exist positive numbers & = dy(ty) and T = T (¢, ) such
that
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(0% —30) < 8o implics (' (1) =" (1)) < t>0+T.

Definition 2.5. The two differential systems (1.1) are said to be uniformly rel-
atively ¢,-asymptotically stable if o and 7 in Definition 2.4 are independent of
ty.
Consider the comparison differential system
u' = G(t,u), u(ty) =uy =0, =0, (2.1)

where G € C[R" x K;,R"] and K, is a cone in R". Let r(¢) be the maximal
solution of (2.1).

Theorem 2.1. Assume that there exist functions V (t,x,y) € C[R" x S, x S,,K|]
and fi(t,x), f>(t,y) € C[R" x K1, R"] such that V(t,x,x) =0, and f(,0) =
f2(2,0) =0, satisfying

(Ay) V(t,x,y) is locally Lipschitzian x and y.

(A2) D+V(tvx>y) <K10‘

(A3) f1(t,x) and f>(t,y) are quasi-monotone in x, y, respectively relative to K;.

(A4) For some ¢, € K;, and (t,x,y) € R x S, x S,

al(¢o, x(1) = y(D)] < (¢o, V(1,x,¥)), a€ A
Then the two systems (1.1) are relatively ¢y-equistable.
Proof. Since V(¢,x,y) is continuous and V(¢,x,x) =0, for given a;(e) > 0,
to € R, there exists ; = 6;(t, €) > 0 such that

||X() —y()H < 0 1mplles ||V(lo,)€o7y())|| < 611(6>, a €A (22)
Now, for some ¢, € Kj,

lI¢ollllxo = yoll < ll¢olldr =0
implies

[ollllV (20, x0, 30)I| < llollar(€) = a(e).
Thus

(¢0ax0 :yO) < 0 1mphes (¢07 V(t(),X(),y())) < a(e)a ac *2///7 (23)

where ||¢,||01 = 0 and ||¢,||ai(€) = a(e). From (A,), V(¢,x,y) is non-increasing,
then

V(faX,J/) g V(IOax07y0)7 t= tp. (24)
From (2.3), (2.4), and condition (A4), we get

(¢0)x0 _yO) <9
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implies
al(¢o, x(2) = y(0)] < (@o, V(1,x,)) < (o, V (10, %0, 0)) < ale), ae A,
i.e.,
(dg,x0 — ) < O implies (P, x"(£) —y*()) <, t = 1.
Then the two systems (1.1) are relatively ¢,-equistable. [

Theorem 2.2. Let the hypotheses of Theorem 2.1 be satisfied, except the con-
dition (A4) being replaced by
(As) For some ¢, € K;, and (t,x,y) € R x S, x S,,

al(¢o, x(1) = y())] < (o, V (t,x,)) < bl(¢o, x(t) = y(1))], a,b e A
Then the two systems (1.1) are uniformly relatively ¢,-stable.

Proof. For ¢ > 0, let 6 = b~![a(e)] independent of # for a,b € # such that
(¢ho,x0 — 30) < 0. Since by (A,), V(¢,x,y) is non-increasing, it follows that

(d)Oa V(taxvy)) < (¢07 V(to,Xo,yo)), L= 1. (25)
From (2.5) and condition (As), we get
al(o, x(1) = ¥(1))) < (¢o, V (1%, 7))
< (o, V (10, %0, 30)) < bl(¢o, x(2) = y(1))]
< b(3) = b[b~"[a(e)]] = a(e),

ie., (¢g,x(t) —y(1) < e
Thus

(¢o,%0 —y0) <& implies (g, x"(r) —y*(1)) <e.
Then the two systems (1.1) are uniformly relatively ¢,-stable. O
Theorem 2.3. Let the hypotheses of Theorem 2.1 be satisfied, except condition
(A,) being replaced by

(AG) D+(¢O7V(tax’y))< _C(¢O7V(t7x7y))a ce A .
Then the two systems (1.1) are relatively equi-asymptotically ¢,-stable.
Proof. From Theorem 2.1, the two systems (1.1) are relatively ¢,-equistable. By
assumption (Ag), V' (¢,x,y) is monotone decreasing function, thus the limit

Ve =limV(t,x,y)

t—00

exists. Now, we prove that V* = 0. Suppose this is false, i.e. V*# 0, then
c(V*) #£0, ¢ € A . Since ¢(r) is monotone increasing function, then
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c[(d)Ov V([vx’y))] > c[(d)Oa V*)]v

and so from (Ag), we get

D (o, V(t,x,y)) < —cl(¢g, V)], ce€A. (2.6)
By integrating (2.6) on [, #], we obtain

(o, V'(1,x,)) < = cl(o, V)(2 = 10) + (o, ¥ (20, X0, 30))-

Thus, as t — oo and for some ¢, € K5, we get (¢, V(t,x,y)) — —oo. This
contradicts condition (Ay). Therefore, V* must be equal to zero. Hence

(g, V(t,x,y)) = 0 ast— oc. (2.7)
From (2.7) and condition (A4), we get
(¢, x(t) —y(2)) = 0 as t — oo.
Thus for given € > 0, £, € R", there exists 6 = §(ty) and T = T(¢, €) such that
(g, x0 —30) <0 implies (¢hg,x" () — (1)) <, t=ty+T.
Then the two systems (1.1) are relatively ¢,-equi-asymptotically stable.
Theorem 2.4. Let the hypotheses of Theorem 2.2 be satisfied, and condition (A,)
be replaced by

(A7) Do, V(t,x,3)) < = cl(@g,x(1) = y(1))], c€ A
Then the two systems (1.1) are relatively uniformly ¢,-asymptotically stable.
Proof. For given ¢ > 0, choose 0 = 6(¢) independent of #,. Suppose that

(¢ho,x0 — 30) < 0, then by Theorem 2.2 the two systems (1.1) are relatively ¢,-
uniformly stable. Going through as in [1], we choose

V™ = {sup(ey, ¥ (to,x0,30)): (¢o,%0 — »0) < 0}
and
T(e)=V*/c(e), ceA.
Now, we prove that
(o, x0 —0) < 6 implies (¢pg,x(¢) — y(2)) < e, t=t+T. (2.8)

Suppose that this is not true, then there exists at least one ¢ > ¢, + T'(¢) such
that

(¢, x0 —30) <& implies (g, x(1) — y(1)) = €. (2.9)
From (2.9), condition (A7), and the monotoncity of ¢ we get

D" (¢, V(t,x,)) < —c(e). (2.10)
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By integrating (2.10) on [ty,#] we get

(o, V(1,x,)) < (¢o, V (10, %0, 0)) — c(€)(t — 1), 1= 1o+ T(e).
Thus for some ¢, € K;;, as t — oo, we get

(¢o, V(t,x,y)) — —o0,

which contradicts condition (As). Hence for each € > 0, #, € R", there exist
positive numbers 0 = d(e) and T = T(¢) such that

(¢o;x0 — ) < & implies (g, x" (1) — ¥ (1)) <¢, t=>1t+T.

Then the two systems (1.1) are uniformly relatively ¢,-asymptotically sta-
ble. O

Theorem 2.5. Assume that conditions (A;), (Az) and (Ay) of Theorem 2.1 are
satisfied. Further assume that

(Ag) D'V(t,x,y)<G(t,V(tx,y)).

Then

(1) If the zero solution of (2.1) is equistable, then the two systems (1.1) are
relatively ¢,-equistable.

(2) If the zero solution of (2.1) is equi-asymptotically stable, then the two
systems (1.1) are relatively equi-asymptotically ¢,-stable.

Proof. (1) Since the zero solution of (2.1) is equistable, for # € R and for
given a;(e) > 0, there exists a 6" = 0" (¢, €) such that
Uy < o 1mphes M(l, ty, uo) < 611(6)7 a €A . (211)

Since V(¢t,x,x) =0 and V(¢,x,y) is continuous, it follows that we find
01 = 91(to, €) satisfying

llxo — yoll <01, V(to,x0,10) < 6.

Now, if we choose V (¢, x0,10) = up and use assumption (Ag), we can apply
Theorem 3.1 of [4] to obtain

V(t,x(t),y(t)) <r(t to,up), t=t, (2.12)
where r(t, ty, up) is the maximal solution of (2.1), thus for some ¢, € K,
l[ollllxo — yoll < llpoll0r  implies [|gbo ||V (2, x, )I| < [[¢ho]lai(e),
ie.,
(0,%0 — 30) <1 @ollllxo — yoll < [[polldr = &
implies

(o, V'(1,x,)) <l @ollIlV (2, %, )| < lIpollar(€) = ale),
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where ||¢||01 = 0 and ||¢g||lai () = a(e). It follows that
(o, x0 —30) <0 1implies (¢, V(t,x,y)) < a(e). (2.13)
From (A4) and by using (2.13), we get
al(¢o, x(1) = y())] < (o, V (t,x,y)) <ale), 1=t
Hence
(¢o,%0 —y0) <& implies (g, x"(1) —=y*(2)) <€, 1>,

where x*(¢), y*(¢) is the maximal solution of (1.1). Therefore the two differential
systems (1.1) are relatively ¢,-equistable.

(2) Since the zero solution of (1.1) is equi-asymptotically stable, for given
ay(e) >0, to € R*, there exist positive numbers & = &y(zy) and T = T(¢, ¢)
such that

ug < g implies u(t, ty, up) < ai(e), t=t+T.
We choose &y = 50(10). From the continuity of ¥ (¢,x,y), we have
o =l <o and ¥ (16, %0,3) <au(e),
as in (1), we get
V(t,x(t),y(t)) <r(t,to,up), =t
Consequently, it follows that for some ¢, € K,
(s %0 = 30) < | Pollllxo = 3oll < [l holldg = &
implies that
(b0, V' (1,2, 9)) <l @ollIlV (8, x, )| < lpollar(e) = ale), =1 +T,
where & = ||¢||d0 and a(e) = ||dollai(e), i,
(dg,x0 —30) <6 implies (¢, V(t,x,y)) <ale), =t +T. (2.14)
From (A4) and by using (2.14), we obtain the following inequality:
al(¢o, x(1) = y(1)] < (o, V (2,x,y)) < a(e).
Hence
(g, x0 —y0) <O implies (g, x* (1) —y* (1)) < e fort=16+T,

where x*(¢), y*(¢) is the maximal solution of (1.1). Then the two differential
systems (1.1) are relatively equi-asymptotically ¢,-stable. O

The following definitions will be needed in the sequel.
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Definition 2.6 (Akpan and Akinyele [1]). The zero solution of system (2.1) is
said to be exponentially asymptotically ¢,-stable if there exist ¢ > 0, o« >0
both real numbers such that

(o, 7(1)) < (o, uo) exp[—al(t — 1)), 1= o,

where #(¢) is the maximal solution of (2.1).

Definition 2.7 (Lakshmikantham and Leela [3]). The two differential systems
(1.1) are said to be relatively exponentially asymptotically stable if there exist
M >0, p > 0 both real numbers such that

() =yl <Mllxo — yollexp[=p(t = 1), 1=10

for any solution x(¢) and y(¢) of (1.1).

Theorem 2.6. Assume that conditions (A,) and (Ag) are satisfied. Further as-
sume that
(Ag) G(2,0) =0, G(t,u) is quasi-monotone in u relative to K.
(A1) For some ¢y € K;, (t,x) € R" xS, xS,
b(llx = yl) < (¢o, V(1 x,y)) alt, |x = yl), a,be .

Then

(3) If the zero solution of system (2.1) is ¢y-equistable, then the two systems
(1.1) are relatively equistable.

(4) If the zero solution of system (2.1) is quasi-equi-asymptotically ¢,-stable,
then the two systems (1.1) are relatively equi-asymptotically stable.

Proof. (3) Let the zero solution of (2.1) be ¢y-equistable and 0 < € < p,
t € R'. Then for given b(e) > 0, t, € R" there exists 5 = 5(t, €) > 0 such that

(g, o) <6 implies (¢, 7(2)) < b(e).

Going through as in [1], we choose a(ty, [|xo — wl|) = (¢, to), then from con-
dition (Ajo), we get

(o, V (t0,%0,30)) < alto, [|xo — yoll) = (Po, o).

Thus
V (to,x0,10) < Up.

By using condition (Ay), and applying Theorem 3.1 of [4] we obtain
V(t,x(t),y(t) <r(t to,uo), 1= to. (2.15)

Now, we choose a(ty,d1) =0, 6; >0. Thus |xo —w| <, and a(t, |jxo —
J|l) < 0 hold at the same time. Therefore from condition (Ajy) and (2.15) we
get



274 M.M.A. El-Sheikh et al. | Appl. Math. Comput. 119 (2001) 265-281

b([lx = y[) < (do, V(t,x,)) < (P, (2, to, o)) < b(e). (2.16)
Thus
[xo =yl <6 implies |lx() —y()| <€, ¢ =1,

where x(¢), y(¢) is any solution of the (1.1). Then the two systems (1.1) are
relatively equistable.

(4) Since the zero solution of system (2.1) is quasi-equi-asymptotically ¢,-
stable, then there exists as in [3] a positive function 6 = (¢, e) for all
t =ty + T(e), such that

llxo — 0|l <6 implies ||x(¢) — y(¢)|| <, t =1+ T(e).
Suppose that this is false, then, going through as in the proof of Theorem 3.6 of
[1], there exists a divergent sequence {#}, # =ty + T(e) such that

lxo —w|| <5 implies ||x(¢) — y(¢)|| = e. (2.17)
Then, from (2.15), (2.17) and (A)y) for ¢ = #, we get the following contradic-
tion:

b(e) = b(llx(t) — y()ll) < (bo, V (1, x(8), y(4)))

(o, r(ti, to,u0)) < b(e).

Therefore such a divergent sequence {# } does not exist. Hence

<
<

[Ixo — 3l < & implies |[|x(z) — y(@)|| <, t=2t—0+T(e).
Then systems (1.1) are relatively equi-asymptotically stable. [
Theorem 2.7. Let conditions (A;), (As) and (Ag) be satisfied. Moreover assume
that
(An) Forc>0, d > 0(d,u) < [lxo — 30|
and
cllx =yl < (o, V(t,x,9)).
If the zero solution of system (2.1) is exponentially asymptotically ¢,-stable, then

the two systems (1.1) are relatively exponentially asymptotically stable.

Proof. Since the zero solution of (2.1) is exponentially asymptotically ¢,-stable,
there exist ¢ > 0 and o > 0 both are real numbers such that

(o, 7(1)) < (o, u0) exp[—alt —n)l, =1 (2.18)

Following [1], we let x(¢,#y,xo), and y(z, f,y) be a solution of (1.1) such that
V (ty, %0, ) < to, then by Theorem 3.1 of [4], we get



M.M.A. El-Sheikh et al. | Appl. Math. Comput. 119 (2001) 265-281 275

V(t,x(t),y()) <r(t). (2.19)
Thus by condition (Aj;) and (2.19), we get
cllx =yl < (o, V(1,%,)) < (o, (1)) (2.20)

Thus, from inequalities (2.18) and (2.20) we obtain

cllx = y||“ < oy, uo) expl—a(t — )], = to. (2.21)
From condition (A;;) and (2.21), we get

[lx = ¥l <Mllxo — yol| exp[—p(t = t)], = to,

where M = (¢/c)"? and = o/d. Then the two systems (1.1) are relatively
exponentially asymptotically stable. [

3. ¢,-Partial stability

In this section we discuss and extend the notion of partial stability of the two
differential systems (1.2) to a new notion of stability, called ¢ -partial stability
notion.

Following [1], let K; C R" be a cone in R" and K, C R" be a cone in R"
satisfy properties (i)—(v) of Definition 1.1, it follows that K = K; UK, C
R"UR" be a cone in R" U R".

The set K* is called the adjoint cone if

K'={peRUR" (p,x+y)=20forxeK, CK, yeK, CK}

and satisfies properties (i)—(v) of Definition 1.1, where (¢,x+y) <
sl ([lx[| + [[¥[]). For m >n and x = (x1,x2,...,%,), ¥ = (51,32, -, Ju), thus
x+y=0,x...,%,0,0,...0) + 01,02, -y Vm)
= (xl FyX0 Vo, X Yy Yurds e - vym)~
Let R'={xeR"|[x[|[<p}, R ={xe R:|x|<p} and V(,x,y) €
CIR" x R x N, K], for any (t,x,y) € R" x R; x R, V(1,0,0) =0, and
V(t,x,y) is locally Lipschitzian in x and y, we define the upper right-hand
derivative of V(¢,x,y) by

DV (tx,y) = lim sup [V (-4 hx + F (13, 3),
y+hH(taxay)) - V(taxay)]
(see [3]).

The following definition is somewhat new and related with that of [1,3].
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Definition 3.1. The zero solution x = 0, y = 0 of (3.1) is said to be partially ¢,-
equistable with respect to components x if for every € > 0, ) € R*, there exists
a positive function é = (¢, €) continuous in ¢, for each ¢ such that

(([’)O,XQ +y0) <o 1mphes ((1)07)(*([7 lo,Xo,yo)) <€, t=t,

where x*(¢, ty, X0, o) = max, >, x(¢, t,X0,0), ¢o € K.
Other partial ¢,-stability notions can be similarly defined.

Theorem 3.1.  Assume that there exist functions V(t,x,y) € C[R" x R} x
N, K]|, FeCIR" x Ky x Ky, R"] and H e C[R" x K| x Ky, R"], such that
V(2,0,0) =0 and F(t,0,0) = H(¢,0,0) = 0, satisfying

(Hy) For some ¢y € K and (t,x,y) € R" x R x N7,

a[(¢O7X*(t))] < (d)Oa V(taxvy))v ac 9{/7

(Hy) V(t,x,y) is locally Lipschitzian in x and y,
(Hs) F(t,x,y) is quasi-monotone in x relative to K;,
(Hy) D'V (t,x,y) <0.
Then the zero solution of (1.2) is partially ¢,-equistable with respect to x.

Proof. Let ¢ > 0, be given, #, € R". Since V(¢,0,0) = 0, and V(t,x,y) is con-
tinuous function in f), then for given a;(e) >0, t, € R, there exists a
01 = 91(t, €) that is continuous in 7y for each ¢ such that

||)C0|| + ||y0|| < 51 1mphes ||V(t0,X0,y0)H < al(ﬁ), a €A, (31)
Thus, for some ¢, € K, t =ty

(€0, %0 +30) < [Pl (llxoll + [lyol]) < [lbolldr = &

implies
(¢o; V(t0,%0,30)) < Il oIV (20, x0, 70) | < Ml pollar (€) = ale), (3-2)
where 0 = ||¢,]|01 and a(e) = ||¢o||ai(e). From condition (Hy4), we get
V(t,x,y) < V(to, X0, o)- (3.3)

From (3.2), (3.3) and condition (H,), we obtain
a[(¢07X*(t))] < (d)Oa V(taxvy)) < (¢07 V(lo,Xo,yo)) < a(e)a

whenever (¢, xo + 1) < 9.
Thus

(dgsx0 +10) <0 implies (g, x* (7)) < e, t=>t.

Then the zero solution of (1.2) is ¢,-partially equistable. [
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Theorem 3.2. Let the hypotheses of Theorem 3.1 be satisfied, except condition
(H,) being replaced by
(Hs) For some ¢, € K; and (t,x,y) € R* x R x R,

al(o,x" ()] < (o, V' (t,x,9)) <b[(o, " (1) + 37 (1)}, a,be A,
where y*(t) = max, y(t,ty,X0,10)-
Then the zero solution of (1.2) is uniformly partially ¢,-stable.

Proof. Let € > 0 and choose 6 = b~'(a(e)) independent of 7. Now for some
¢y €K, a,b e A, let (¢, x0 + 1) < J. From condition (Hs), and (3.3), we get

<
al(¢o, x" (1)) < (o, V' (2,x,)) < (o, V (t0, %0, 30))
<bl(hg, %0 +30)] < b(8) = b[b™[a(e)]] = a(e),
ie.,
(o, x0 +0) <0 1implies (¢hy,x" (1)) < e.
Then the zero solution of (1.2) is uniformly partially ¢,-stable. [

Theorem 3.3. Let the conditions of Theorem 3.2 be satisfied except condition
(Hy) being replaced by

(HG) D+(¢O7V(t7x7y))< _c((rbO? V(t7x7y))7 cE *%/'
Then the zero solution of system (1.2) is partially equi-asymptotically ¢,-stable.
Proof. Since condition (Hg) tends to condition (Hy), by applying Theorem 3.1,
it follows that the zero solution of the system (1.2) is partially ¢,-equistable.
From (Hg), V(¢,x,y) is monotone decreasing and hence V* = lim,_, V' (¢,x,y)

exists. Also we show that V* = 0, if this not true, i.e., V* # 0, then ¢(V*) # 0,
¢ € A . Since ¢(r) is monotone increasing

(o, V(t,x,9)) > (g, V"), ceA.
Thus

D (o, V(t,x,y)) < —c(g, V7). (3.4)
By integration (3.4) on [t, ], we obtain

(b0, V(1,x,)) < = by, V')t = t0) + (¢, V (10, %0, 30))-

Hence for some ¢, € K, we get (¢, V(t,x,y)) — —oo as t — oo which con-
tradicts condition (H;). Thus V* = 0, and hence

(¢0a V(t7x,y)) — 0 ast— oo.
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By using the condition (Hs)
(¢o,x* (1)) — 0 ast— oc.

Thus for given € > 0, t, € R™, there exist 5 = 6(¢y, ¢) and T = T(y, €) > 0, such
that

(¢gsx0 + ) <o implies (P, x" (7)) <€, t=t+T.
Then the zero solution of the system (1.2) is ¢,-partially equi-asymptotically
stable. O

Theorem 3.4. Let the conditions of Theorem 3.2 be satisfied except condition
(Hy) which is being replaced by

(H7) D™ (¢, V(1,x,9) < — e, x" (1)), c €.
Then, the zero solution of (1.2) is uniformly partially asymptotically ¢,-stable.

Proof. The proof is similar to that of Theorem 2.4; so it is omitted. O

Theorem 3.5. Let the conditions of Theorem 3.1 be satisfied except the condition
(Hy) which is being replaced by

(Hg) D+V(t7x7y) < G(t, V(taxay))7 (t7x7y) € R x S‘RZ X g{::l
Thus
(1) If the zero solution of (2.1) is equistable, then the zero solution of (1.2) is
partially ¢-equistable.

(1) If the zero solution of (2.1) is equi-asymptotically stable, then the zero so-
lution of (1.2) is partially equi-asymptotically ¢,-stable.

Proof. (i) Since the zero solution of (2.1) is equistable, for #, € R*, and for
given a;(e) > 0 there exists a 6" = §"(#, €) such that

Uy < o 1mphes M(l, ty, uo) < 611(6)7 a €A (35)

Since V(¢,0,0) =0 and the function V(z,x,y) is continuous, there exists a
51 = 51(f076), such that

[Ixoll + [lyoll <01, [V (20, x0, o) || < 6"

satisfying at the same time. Choose uy = V (t,x0,)0) and condition (Hg).
Therefore we can apply Theorem 3.1 of [4] to obtain

V(tvx(t)ay(t))<r(tat07”0)a t = ty, (36)
where r(, t, up) is the maximal solution of (2.1). Now for some ¢, € K,

(¢0; %0 +30) < ll¢oll (llxo +30[l) < llolldr = &
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implies

(¢0)7 V(t,x,y)) < ||¢O||||V(t7x>y)” < ||¢0||a1(6) = a(e), (3'7)
where [|¢y||01 = 6 and ||dyllai(e) = a(e). From (3.7) and condition (H;), we
obtain

al(do, x(1))] < (o, V(1,x,)) < ale), t=1.
Whenever (¢g,x0 + ) < 9,

(g, x0 +10) <0 implies (¢hy,x (1)) < e, t=t.

Then the zero solution of (1.2) is partially ¢,-equistable.
(i1) The proof of part (ii) is similar to the proof of part (2) of Theorem 2.4; so
it is omitted. [

Theorem 3.6. Let conditions (Ag), (H,) and (Hg) be satisfied. Further assume
that
(Hy) For some ¢, € K;, (1,x,y) € RT x R} x R
a([lx"[1) < (o, V(t,%,3)) < bt x| + lI¥I), @b e A
Then
(iii) If the zero solution of (2.1) is ¢y-equistable, then the zero solution of (1.2)
is partially equistable with respect to x.

(iv) If the zero solution of (2.1) is quasi-equi-asymptotically ¢,-stable, then the
zero solution of (1.2) is partially quasi-equi-asymptotically stable.

Proof. (iii) Let the zero solution of (2.1) be ¢,-equistable, and 0 < e < p, t € R*.
Then for given a(e) > 0, t, € R, there exists J = §(ty,€) > 0, such that

(¢o,u0) < 0 implies (¢py, 7(¢)) < b(e), (3.8)

where r(¢) is the maximal solution of (2.1). Going through as in the proof of
Theorem 3.6 of [1], we choose b(to, ||xo|| + [I30]]) = (¢, uo), then from the
condition (Hy), we get

(o, V (20,0, 30)) < b(to, [1xo[| + [y0ll) = (o, uo)-

Thus
V (to, %0, ) < o.

By using the condition (Hg) and applying Theorem 3.1 in [4] we obtain
V(t,x(1),y(1)) <r(t, to,u), 1= to. (3.9)

Now, choose ¢; >0 such that b(z,d,) = . Thus the inequalities |xo|| +
ol <61 and  b(to, ||xo| + |[30]]) < & hold together. Therefore from condition
(Hy), (3.8), and (3.9) we get
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a([lx[) < (¢o, V' (#,x,9)) < (¢o, 7 (2, to, o)) < afe). (3.10)
Thus

[Ixoll + |Doll < 01 implies ||x*(?)| < e, t=ty.

Then the zero solution of (1.2) is partially equistable with respect to x.
The remainder of the proof is similar to part (4) of Theorem 2.6 and,
therefore, omitted. [

Theorem 3.7. Let conditions (Ag), (H,) and (Hg) be satisfied. Furthermore
assume that

(Hio) For ¢ >0, d >0, ($o,u0) < (I[xoll + [[yo]})*
and
CHx”d < (d)(), V(t,xay))'
If the zero solution of system (2.1) is exponentially asymptotically ¢,-stable, then

the zero solution of (1.2) is partially exponentially asymptotically stable.

Proof. Since the zero solution of (2.1) is exponentially asymptotically ¢,-stable,
then there exist ¢ > 0 and « > 0 both real numbers such that

(¢0,7(1)) < a(o, uo) exp[—a(t — 10)], 1= to. (3.11)

Following [1] we let x(¢, #y,x0), and y(z, fy, o) be any solution of (1.2), such that
V (t,x0,0) < ug, then by Theorem 3.1 of [4], we get

V(t,x(t),y(t)) <r(t). (3.12)
Thus by condition (Hjo) and (3.12) we get
cllxl| < (o, V(1,%,)) < (g, 7(2)). (3.13)

Thus, from inequalities (3.11) and (3.13), we get

Il < oy (1)) < oy, o) expl—a(t — 1)), 1> to (3.14)
From condition (Hyy) and (3.14), we get

[[x[| < Mlxoll + [lyoll exp[=p(r — 10)], 1= 10,

where M = (o/c)l/ “and B = u/d. Then the zero solution of (1.2) is partially
exponentially asymptotically stable. [
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